Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой.Еще такую пирамиду называют тетраэдром.
Правильная пирамида обладает множеством свойств, которые выводятся из составляющих ее фигур:
- Все стороны основания равны между собой, потому что оно представлено правильным треугольником;
- Все ребра пирамиды также равны между собой;
- Т.к. каждая грань образует равнобедренный треугольник, в котором ребра равны и основания равны, то можно сказать, что площадь каждой грани одинакова;
- Все двугранные углы при основании равны.
Площадь треугольной пирамиды рассчитывается, как сумма площадей основания и боковой развертки. Также ее можно найти, если рассчитать площадь одной из боковых граней и основания. Формула объема треугольной пирамиды также выводится из свойств треугольников, из которых она состоит:

Площадь основания рассчитывается из формулы площади правильного треугольника:
Рассмотрим пример расчета объема треугольной пирамиды.

Для начала найдем площадь основания. Для этого подставим известные данные в приведенную выше формулу:

Теперь используем найденное значение для расчета объема треугольной пирамиды:

Для расчета площади треугольной пирамиды можно также использовать сокращенную формулу. В ней совмещаются площадь основания и высота, а читается такая формула как треть произведения площади основания на высоту пирамиды:

Используя эту формулу, важно строго следить за подсчетами и сокращениями. Одна маленькая ошибка может привести к неверному результату. В целом, найти объем правильной треугольной пирамиды очень просто.