Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии.Основаниями конуса являются геометрические круги.
Усеченный конус может быть получен в результате вращения прямоугольной трапеции вокруг ее боковой стороны, которая является ее высотой. Границей конуса является круг радиуса R, круг радиуса r и боковая поверхность конуса. Боковую поверхность конуса описывает боковая сторона трапеции во время ее вращения.
Площадь боковой поверхности усеченного конуса через направляющую и радиусы его оснований
При нахождении площади боковую поверхность усеченного конуса целесообразней рассматривать как разность боковой поверхности конуса и боковой поверхности отсеченного конуса.
Пусть от данного конуса AMB отсекли конус A`MB`. Необходимо вычислить боковую площадь усеченного конуса AA`B`B. Известно, что радиусы его оснований AO=R, A`O`=r, образующая равна L.Обозначим MB` за x. Тогда боковая поверхность конуса A`MB` будет равна πrx. А боковая поверхность конуса AMB будет равна πR(L+x).
Тогда боковую поверхность усеченного конуса AA`B`B можно выразить через разность боковой поверхности конуса AMB и конуса A`MB`:
Треугольники OMB и O`MB`– подобны по равенству углов ∠{MOB} = ∠{MO`B`} и ∠{OMB} = ∠{O`MB`}. Из подобия этих треугольников следует:
Воспользуемся производной пропорции. Имеем:
Отсюда находим x:
Подставив это выражение в формулу площади боковой поверхности, имеем:
Таким образом, площадь боковой поверхности усеченного конуса равна произведению числа π на его направляющую и сумму радиусов его оснований.
Формула площади боковой поверхности усеченного конуса имеет следующий вид:

Радиус большего основания, образующая и высота усеченного конуса равны 7, 5 и 4 см соответственно. Найдите площадь боковой поверхности конуса.
Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, с основаниями 2R и 2r. Образующая усеченного конуса, являющаяся боковой стороной трапеции, высота, опушенная на большое основание и разность радиусов основания усеченного конуса, образуют египетский треугольник. Это прямоугольный треугольник с соотношением сторон 3:4:5. По условию задачи образующая равна 5, а высота – 4, тогда разность радиусов основания усеченного конуса будет равна 3.
Имеем:
L=5
R=7
R=4
Формула площади боковой поверхности усеченного конуса имеет следующий вид:

Подставив значения, имеем:

Площади боковой поверхности усеченного конуса через направляющую и средний радиус
Средний радиус усеченного конуса равен половине суммы радиусов его оснований:
Тогда формула площади боковой поверхности усеченного конуса может быть представлена следующим образом:
Площадь боковой поверхности усеченного конуса равна произведению длины окружности среднего сечения на его образующую.
Площади боковой поверхности усеченного конуса через радиусы его основания и угол наклона образующей к плоскости основания
Если меньшее основание ортогонально спроектировать на большее основание, то тогда проекция боковой поверхности усеченного конуса будет иметь вид кольца, площадь которого вычисляется по формуле:
Тогда:
Площади боковой поверхности усеченного конуса по Архимеду
Площадь боковой поверхности усеченного конуса равна площади такого круга, радиус которого является средней пропорциональной между образующей и суммой радиусов его оснований
Полная поверхность усеченного конуса
Полная поверхность конуса – это сумма площади его боковой поверхности и площади оснований конуса:

Основаниями конуса является круги с радиусом R и r. Их площадь равна произведению числа на квадрат их радиуса:
Площадь боковой поверхности вычисляется по формуле:
Тогда площадь полной поверхности усеченного конуса равна:
Формула имеет следующий вид:

Радиус основания усеченного конуса 1 и 7 дм, а диагонали осевого сечения взаимно перпендикулярны. Найдите площадь полную площадь усеченного конуса
Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, с основаниями 2R и 2r. То есть основания трапеции равны 2 и 14 дм соответственно. Так как диагонали трапеции взаимно перпендикулярны, то высота равна полусумме ее оснований. Тогда:

Образующая усеченного конуса, являющаяся боковой стороной трапеции, высота, опушенная на большое основание и разность радиусов основания усеченного конуса, образуют прямоугольный треугольник.
По теореме Пифагора найдем образующую усеченного конуса:

Формула площади полной поверхности усеченного конуса имеет следующий вид:

Подставив значения из условия задачи и найденные значения, имеем:
