Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус.
Площадь кольца, выраженная через внешний и внутренний радиусы
Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Фигура, заключенная между этими окружностями и будет кольцо, у которого R является внешним радиусом, r -внутренним радиусом.
Тогда площадь этой фигуры будет равна разницы между площадью круга с большим радиусом и площадью круга с меньшим радиусом.
Площадь круга с радиусом r выражается формулой:
Площадь круга с радиусом R выражается формулой:
Тогда площадь кольца будет равна:

Таким образом, площадь кольца равна произведению числа на разницу квадратов внешнего и внутреннего радиусов:

Найдите площадь кольца, если его внешний радиус равен 3, а внутренний – 2
Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Площадь кольца, выраженная через внешний и внутренний диаметры
Иногда при решении задач удобней использовать формулу площади кольца, выраженную через внутренний и внешний диаметры.
Пусть D – внешний диаметр кольца, d -внутренний диаметр кольца, тогда:
Выразим радиус через диаметр. Имеем:
Площадь кольца вычисляется по формуле:
Подставив выраженные через диаметр радиусы, получим:
Таким образом, площадь кольца равна четверти произведения числа на разницу квадратов внешнего и внутреннего диаметров:

Найдите площадь кольца, если его внешний диаметр равен 10, а внутренний – 6
Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Площади кольца, выраженная через средний радиус и ширину кольца
Пусть k– ширина кольца, являющийся разницей между большим и меньшим радиусом, то есть k=R-r-средний радиус кольца, равный
Площадь кольца вычисляется по формуле:
Применив формулу разности квадратов, имеем:
Но R-r=k, а
Подставим правые части равенства в формулу площади кольца.
Получим:
Площадь кольца равна удвоенному произведению числа среднего радиуса на ширину кольца.


Найдите площадь кольца, если его средний радиус равен 5, а ширина – 2
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площади кольца через длину самого большого отрезка, проведенного внутри кольца
Пусть AB –самый большой отрезок, лежащий внутри кольца. Точка С – половина этого отрезка. Этот отрезок будет являться касательной к кругу меньшего радиуса. Касательная перпендикулярна радиусу меньшей окружности, проведенного в точку каcания C. Тогда
Следовательно, треугольник ACO –прямоугольный, где
По теореме Пифагора имеем:
Площадь кольца равна:
Подставив, получим:
Следовательно, площадь кольца равна произведению числа на квадрат половины самого большого отрезка кольца.