Параллелограмм – это четырехугольник, у которого стороны попарно параллельны.
В этой фигуре противоположные стороны и углы равны между собой. Диагонали параллелограмма пересекаются в одной точке и делятся ей пополам. Формулы площади параллелограмма позволяют найти значение через стороны, высоту и диагонали. Параллелограмм также может быть представлен в частных случаях. Ими считаются прямоугольник, квадрат и ромб.
Для начала рассмотрим пример расчета площади параллелограмма по высоте и стороне, к которой она опущена.
Этот случай считается классическим и не требует дополнительного разбирательства. Лучше рассмотрим формулу вычисления площади через две стороны и угол между ними. Этот же способ применяется в расчете площади треугольника по теореме косинусов и синусов. Если даны стороны и угол между ними, то площадь рассчитывается так:
Площадь параллелограмма через диагонали
Формула площади параллелограмма через диагонали позволяет быстро найти значение.
Для вычислений понадобится величина угла, расположенного между диагоналями.
Пример расчета площади параллелограмма через диагональ дал нам прекрасный результат – 8,75.
Зная формулу площади параллелограмма через диагональ можно решать множество интересных задач. Давайте рассмотрим одну из них.
Задача: Дан параллелограмм с площадью 92 кв. см. Точка F расположена на середине его стороны ВС. Давайте найдем площадь трапеции ADFB, которая будет лежать в нашем параллелограмме. Для начала нарисуем все, что получили по условиям.
Приступаем к решению:
По нашим условиям ah =92, а соответственно, площадь нашей трапеции будет равняться