Площадь боковой поверхности пирамиды

Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.
Пирамида
Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот способ расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

S_bok=1/2 Pa

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Иконка карандаша 24x24Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен: P=5*3=15 cm
Теперь можно найти боковую площадь пирамиды: S_bok={1/2}*15*5=37,5{cm}^2

Площадь правильной треугольной пирамиды

Правильная треугольная пирамида
Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными способами. Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Иконка карандаша 24x24Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет: S={1/2} ab
Подставляем значения в формулу: S={1/2}*4*2=4{cm}^2
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:
S=3S_gr
S=3*4=12{cm}^2

Площадь усеченной пирамиды

Усеченная пирамида
Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:
S=1/2{(p_1+p_2)}a

Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.

Иконка карандаша 24x24Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.
Для начала найдем периметр оснований. В большем основании он будет равен: p_1=4b=4*5=20 cm
В меньшем основании: p_2=4c=4*3=12 cm
Посчитаем площадь: S=1/2 {(20+12)}*4={32/2}*4=64{cm}^2

Таким образом, применив несложные формулы, мы нашли площадь усеченной пирамиды.

Похожие записи
Поделиться
Другие статьи по теме