Пирамидой называют многогранник, основанием которого является произвольный многоугольник, а все грани представляют собой треугольники с общей вершиной, являющейся вершиной пирамиды.
Пирамида – это объемная фигура. Именно поэтому довольно часто требуется найти не только ее площадь, но и объем. Формула объема пирамиды очень проста:

где S – площадь основания, а h – высота пирамиды.
Высотой пирамиды называется прямая, опущенная из ее вершины к основанию под прямым углом. Соответственно, чтобы найти объем пирамиды, необходимо определить какой многоугольник лежит в основании, рассчитать его площадь, узнать высоту пирамиды и найти ее объем. Рассмотрим пример расчета объема пирамиды.


Стороны основания a = 3 см, все боковые ребра b = 4 см. Найдите объем пирамиды.
Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ:

Подставим значения в формулу:


Высоту h мы найдем с помощью d и ребра b:


Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:

Подставим найденные значения в формулу расчета объема:

Вот таким образом, зная свойства пирамиды и несколько формул, можно рассчитать ее объем.