Площадь кольца

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус.

Площадь кольца, выраженная через внешний и внутренний радиусы

кольцо
Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Фигура, заключенная между этими окружностями и будет кольцо, у которого R является внешним радиусом, r -внутренним радиусом.
Тогда площадь этой фигуры будет равна разницы между площадью круга с большим радиусом и площадью круга с меньшим радиусом.

Площадь круга с радиусом r выражается формулой:
S={pi}r^2
Площадь круга с радиусом R выражается формулой:
S={pi}R^2
Тогда площадь кольца будет равна:

S={pi}R^2-{pi}r^2={pi}(R^2-r^2)

Таким образом, площадь кольца равна произведению числа на разницу квадратов внешнего и внутреннего радиусов: S={pi}(R^2-r^2)

Иконка карандаша 24x24Пример расчета площади кольца, если известны его радиусы.
Найдите площадь кольца, если его внешний радиус равен 3, а внутренний – 2
Площадь кольца вычисляется по формуле:
S={pi}(R^2-r^2)
Подставив значения из условия задачи, имеем:
S={pi}(3^2-2^2)=5{pi}

Площадь кольца, выраженная через внешний и внутренний диаметры

Иногда при решении задач удобней использовать формулу площади кольца, выраженную через внутренний и внешний диаметры.
кольцо
Пусть D — внешний диаметр кольца, d -внутренний диаметр кольца, тогда:
D=2R, d=2r
Выразим радиус через диаметр. Имеем:
R={1/2}D, r={1/2}d
Площадь кольца вычисляется по формуле:
S={pi}(R^2-r^2)
Подставив выраженные через диаметр радиусы, получим:
S={pi}(({1/2}D)^2-({1/2}d)^2 )={pi} {1/4}(D^2-d^2)
Таким образом, площадь кольца равна четверти произведения числа на разницу квадратов внешнего и внутреннего диаметров:
S={{pi}/4}(D^2-d^2)

Иконка карандаша 24x24Пример расчета площади кольца, если известны его диаметры.
Найдите площадь кольца, если его внешний диаметр равен 10, а внутренний – 6
Площадь кольца вычисляется по формуле:
S={{pi}/4}(D^2-d^2)
Подставив значения из условия задачи, имеем:
S={{pi}/4 }{({10}^2-6^2)}=16{pi}

Площади кольца, выраженная через средний радиус и ширину кольца

Пусть k— ширина кольца, являющийся разницей между большим и меньшим радиусом, то есть k=R-r-средний радиус кольца, равный 1/2(R+r)
кольцо
Площадь кольца вычисляется по формуле:
S={pi}(R^2-r^2)
Применив формулу разности квадратов, имеем:
S={pi}(R^2-r^2 )={pi}(R-r)(R+r)
Но R-r=k, а R+r=2 overline{r}
Подставим правые части равенства в формулу площади кольца.
Получим:
S=2{pi}overline{r}k
Площадь кольца равна удвоенному произведению числа среднего радиуса на ширину кольца.

Иконка карандаша 24x24кольцоПример расчета площади кольца, если известны его средний радиус и ширина.
Найдите площадь кольца, если его средний радиус равен 5, а ширина – 2

Площадь кольца вычисляется по формуле:
S=2 {pi} overline{r} k

Подставив значения из условия задачи, имеем:
S=2{pi}*5*2=16{pi}

Площади кольца через длину самого большого отрезка, проведенного внутри кольца

Пусть AB –самый большой отрезок, лежащий внутри кольца. Точка С – половина этого отрезка. Этот отрезок будет являться касательной к кругу меньшего радиуса. Касательная перпендикулярна радиусу меньшей окружности, проведенного в точку каcания C. Тогда AB ortho CO
Следовательно, треугольник ACO –прямоугольный, где
AO=R,CO=r,AC=1/2 AB
По теореме Пифагора имеем:
{AO}^2={AC}^2+{CO}^2
R^2=({1/2} AB)^2+r^2
R^2-r^2=({1/2} AB)^2
Площадь кольца равна:
S={pi}(R^2-r^2)
Подставив, получим:
S={pi}({1/2} AB)^2
Следовательно, площадь кольца равна произведению числа на квадрат половины самого большого отрезка кольца.

Похожие записи
Поделиться
Другие статьи по теме