Объем тетраэдра

Рассмотрим произвольный треугольник ABC и точку D, не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC. В результате получим треугольники ADC, CDB, ABD. Поверхность ограниченная четырьмя треугольниками  ABC, ADC, CDB и ABD называется тетраэдром и обозначается DABC.
тетраэдрТреугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.

тетраэдрНо также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем  любого тетраэдра можно рассчитать по формуле

V=1/3 SH,

где

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

тетраэдр

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a. DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD.
Высота BM равна BM и равна a sqrt{3}/2
Рассмотрим треугольник BDM, где DH, являющаяся  высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

h_BM=2sqrt{p(p-BM)(p-DM)(p-BD)}/BM, где
BM=a sqrt{3}/2, DM=a sqrt{3}/2, BD=a,
p=1/2 (BM+BD+DM)= 1/2(a sqrt{3}/2+a sqrt{3}/2+a)=1/2a( sqrt{3}+1)
Подставим эти значения в формулу высоты. Получим
h_BM=2sqrt{1/2a( sqrt{3}+1)(1/2a( sqrt{3}+1)-a sqrt{3}/2 )(1/2a( sqrt{3}+1)-a sqrt{3}/2 )(1/2a( sqrt{3}+1)-a)}/(a sqrt{3}/2) 
Вынесем 1/2a. Получим

2sqrt{1/2a( sqrt{3}+1)1/2a( sqrt{3}+1-sqrt{3})1/2a(sqrt{3}+1-sqrt{3})1/2a( sqrt{3}-1))/(a sqrt{3}/2) 
2sqrt{(1/2a)^{4}( sqrt{3}+1)*1*1*( sqrt{3}-1)}/(a sqrt{3}/2) 
Применим формулу разность квадратов
2sqrt{(1/2a)^{4}*2}/(a sqrt{3}/2) 
После небольших преобразований получим
(2a^{2}sqrt{2}*2)/(4a sqrt{3}) = sqrt{2/3}a
DH = sqrt{2/3}a
Объем  любого тетраэдра можно рассчитать по формуле
V=1/3 SH,
где S=1/2aa sqrt{3}/2=  sqrt{3}/4a^{2},
H=a sqrt{3}/2
Подставив эти значения, получим
V=1/3 sqrt{3}/4a^{2}a sqrt{3}/2 =sqrt{3}/12 a^{3}

Таким образом формула объема для правильного тетраэдра

V=sqrt{3}/12 a^{3}

где a –ребро тетраэдра

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра
A_1(x_1,y_1,z_1),A_2(x_2,y_2,z_2),A_3(x_3,y_3,z_3)
Из вершины A_1  проведем векторы overline{A_1A_2}, overline{A_1A_3}, overline{A_1A_4}.
Для нахождения координат каждого  из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
overline{A_1A_2}(x_2-x_1,y_2-y_1,z_2-z_1)
overline{A_1A_3}(x_3-x_1,y_3-y_1,z_3-z_1)
overline{A_1A_4}(x_4-x_1,y_4-y_1,z_4-z_1)

 Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

V= delim{|}{overline{A_1A_2},overline{A_1A_3},overline{A_1A_4}}{|}

delim{|}{overline{A_1A_2},overline{A_1A_3},overline{A_1A_4}}{|}=delim{|}{matrix{3}{3}{x_2-x_1 y_2-y_1 z_2-z_1 x_3-x_1 y_3-y_1 z_3-z_1 x_4-x_1 y_4-y_1 z_4-z_1}}{|}

Иконка карандаша 24x24
Для закрепления материала рассмотрим пример использования формулы объема тетраэдра.
Объем правильного тетраэдра равен 2 см3. Найдите объем правильного тетраэдра, ребро которого в 3 раза больше ребра данного тетраэдра. 
Объем правильного тетраэдра вычисляется по формуле V=sqrt{3}/12 a^{3}
Тогда 2=sqrt{3}/12 a^{3}
Выразим куб стороны a^{3}=24/sqrt{3}
Если сторону  увеличить в 3 раза, что его куб увеличиться в 27 раз. Тогда
{a_1} ^{3}=24*27/sqrt{3}м
Найдем объем V=sqrt{3}/12 24*27/sqrt{3}=54

Похожие записи
Поделиться
Другие статьи по теме